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1 Statement of the Cayley-Hamilton Theorem

Let f(x) =
∑m

i=0
aix

i be an mth degree polynomial in C with ai ∈ C. Using this one can
define a polynomial in A ∈ Cm×m as

f(A) :=
m

∑

i=0

aiA
i, (1)

where Ai is the ith power of the matrix A with A0 := Im. For λ ∈ C, the characteristic
polynomial of the matrix A is defined as

fA(λ) := det(A − λI). (2)

Note that

fA(λ) = det(A − λI) =
m

∑

i=1

biλ
i, (3)

where the coefficients bi, i = 1, 2, . . . , m depend on the entries of the matrix A. We say that
the matrix A is annihilated by the polynomial fA(λ) if fA(A) = 0.

Exercise 1: Prove that det(A−λI) is a continuous function in the entries of the matrix A.
Exercise 2: Let the matrix A ∈ Cm×m be equivalent to a diagonal matrix. Then, prove

that fA(A) = 0.
Now, let us state the main theorem.

Theorem 1 Any m × m matrix A is annihilated by its characteristic polynomial, i.e.,

fA(A) = 0. (4)

2 Proof of the Cayley-Hamilton Theorem

First, let us look at the idea behind the proof.
Supposing that there exist matrices A1, A2, . . . such that

1. fAi
(Ai) = 0 for all i = 1, 2, 3, etc.



2. A = limn→∞ An, i.e., ‖A − An‖ → 0 as n → ∞ for any norm ‖ ∗ ‖.

Now, let us look at the consequence of the above assumptions. Denote the set of all m × m

matrices by Mm. Since the characteristic polynomial f : Mn → C is a continuous function,
we have

fA(A) = lim
n→∞

fAn
(An) = 0, (5)

which gives the desired result! Note that the equality above follows from the fact that all
norms are equivalent in a finite dimensional vector space. Thus, we need to construct a
sequence of matrices that satisfy (1) and (2) above.

It is easy to see that property (1) above is satisfied if the matrices Ai, i = 1, 2, 3, ... have
distinct eigenvalues (why?). Property (2) is satisfied if Ai, i = 1, 2, 3, ... become “sufficiently”
close to A as i becomes large. The task of finding such a sequence of matrices become easy
due to the Schur’s triangularization theorem.

2.1 Complete Proof

Let A ∈ Cm×m. By Schur’s triangularization theorem, we have,

A = UTUH , (6)

where U is a unitary matrix, T is an upper triangle matrix with the diagonal entries being
the eigenvalues of A. Denote the (ij)-th entry of T by tij . Now, construct the sequence An,
n = 1, 2, 3, ... as follows:

An = UTnUH , (7)

where tnij (the ij − th entry of Tn) is given by

tnij =

{

tij if i 6= j

tii + ǫi

n
if i = j,

(8)

where 0 < ǫi < ∞, i = 1, 2, . . . , m are chosen such that the diagonal entries of Tn are distinct.
Note that the matrices Tn and T differ only in the diagonal entries. Since the diagonal entries
of Tn are the distinct eigenvalues of the matrix An, An is diagonalizable for all n ≥ 1. Thus,
each matrix An satisfies fAn

(An) = 0. It is easy to see that for any norm ‖ ∗ ‖, we have

‖A − An‖
2 = ‖T − Tn‖

2

≤ K‖T − Tn‖
2

F for some 0 < K < ∞ (by equivalence of norms)

≤ K
1

n2

m
∑

i=1

ǫ2

i

≤ K
m

n2
max

1≤i≤m
ǫ2

i

→ 0 as n → ∞.

Using the above and the continuity of the characteristic polynomial, it implies that

fA(A) = lim fAn
(An) = 0.

This completes the proof. �


